Identification of Various Controlled Substances by Headspace Chemical Analysis using Headspace Solid Phase Micro-Extraction and GC-MS

Justin Day¹, MS*; H. Ross Ehmann², MS; Jorn Yu¹, PhD

¹Department of Forensic Science, Sam Houston State University, Huntsville, TX 77340

²Harris County Institute of Forensic Sciences, Houston, TX 77054

HARRIS COUNTY INSTITUTE OF FORENSIC SCIENCES

HOUSTON, TEXAS

SCIENCE | SERVICE | INTEGRITY

Goal

- Improve results and preserve evidence while saving effort, time, & money
 - Some samples are known to cause instrument problems
 - Dirty samples can cause sample carryover
 - Instrument components may need to be replaced
 - Some substances require derivatization
 - Each step in the process presents an opportunity for error

HS-SPME

- Solid Phase Micro-Extraction Holder (Manual)
 - Supelco
- SPME Fiber Assembly
 - 100 µm Polydimethylsiloxane Coating (PDMS)
- Headspace Vials
 - 20 mL

HS-SPME Apparatus

Chemicals

- Synthetic cathinone standards (26)
- Real world case samples
- O-(2,3,4,5,6-Pentafluorobenzyl)hydroxylamine hydrochloride*
 - aka PFBHA
- MSTFA

^{*}Kerrigan, S. Improved Detection of Synthetic Cathinones in Forensic Toxicology Samples: Thermal Degradation and Analytical Considerations; U.S. Department of Justice, 2015.

Instruments

GC-FID

- Agilent Technologies 7890A
- ZB-50 Column
- Adjusted for Manual SPME

GC-MS

- Agilent 6890 series GC system
- DB-1MS Column
- Agilent 5973N Mass Selective Detector
 - Full scan mode
- Adjusted for Manual SPME

Plan

- Extraction of cathinone standards
- Derivatization of cathinone standards
- Case Samples
 - Pills
 - Powders
 - Crystals
 - Marijuana

Extraction of Cathinones

Creating Test Samples

- Individual Cathinones
 - Added 20 μL (1 mg/mL) of solvated standard
 - Dried down under nitrogen
 - 26 different cathinones used

Extraction of Cathinones

Optimized Method

- Fiber Conditioning
 - Temperature: 270 °C
 - Time: 10 minutes
 - Needle Depth: 32 mm
- Extraction
 - Incubation Time: 5 minute
 - Temperature: 150 °C
 - Exposure Time: 1 minute

Extraction of Cathinones

4-FMC 1 mg/mL standard Direct Injection

4-FMC 20 µg dry salt HS-SPME Method

Preparation of Derivatizing Agent

- PFBHA
 - 1.398 mg/mL(methanol)
 - Transferred desired amount to insert
 - 10 100 µL
 - Dried down under nitrogen
- Performed extraction using optimized extraction parameters
 - Small amount of solid produced very intense peak
 - Showed PFBHA was volatile at desired temperature

Solventless Derivatization

- Dried PFBHA insert added to headspace vial
- No direct contact between agent and cathinone salt
 - Derivatization occurs in the headspace
- All cathinones tested
 - Extracted for 1 minute, with 10 minute incubation period
 - Longer incubation was to encourage reaction completion
- Amount of agent adjusted for MS runs

Application to Case Samples

- Used parameters from cathinone study
 - Adjusted to optimize as needed
- Sample size dependent on form
 - Explored both minimal mass needed and what facilitated least prep

Case Samples

Pills

- Whole tablets used for testing
 - Adderall
 - Soma
 - Ecstasy

Powders

- Cocaine
 - Different cutting agents greatly impacted extraction efficacy

Crystals

- Methamphetamine and "bath salts"
 - Small crystal samples used
 - Very volatile relative to other specimens

Botanicals

- Marijuana
 - Whole bud tested
 - Headspace MSTFA derivatization explored

Adderall GC-FID

Methanol Extraction

HS-SPME Method

5000000

Time

1.00

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00

Soma GC-FID

Methanol Extraction

Ecstasy GC-FID

Methanol Extraction

Cocaine Case GC-FID

Methanol Extraction

HS-SPME Method

1e+07

5000000

Time

0.50

1.00

1.50

1.846

2.00

2.183

2.765

3.00

3.50

2.50

4.090

4.00

₩ 4.846

5.00

5.50

6.00

4.50

Cocaine

6.50

7.00

Methamphetamine GC-FID

Base/Hexane Extraction

Methylone GC-FID

Base/Hexane Extraction

Marijuana GC-FID

Isopropyl Alcohol Extraction

Conclusions

- Many controlled substances can be extracted using HS-SPME
 - Extraction can occur at microgram levels
 - Can extract from variety of matrices
 - Minimal sample preparation
 - No wet chemistry, most items remained physically intact
- Minimal carryover
- No single catch all method
 - Analyte volatility varies
- Higher temperatures could extract additional analytes
- Derivatization can occur in the headspace
 - Rapid derivatization

Continuing Project

- High capacity SPME fibers
- Derivatization optimization
- Extraction optimization for alternative matrices
- Additional controlled substances
- Automation

Acknowledgements

Sam Houston State University

H. Ross Ehmann, MS – Mentor

Kyle Vircks, MS – Mentor

Kay McClain – Drug Chemistry Manager

Jasmine Jefferson, MS - Training & Development Manager

Dr. Warren C. Samms – Director of Toxicology and Drug Chemistry

Dr. Roger Kahn – Crime Laboratory Director

Dr. Luis Sanchez - Executive Director & Chief Medical Examiner

Thank you!

Justin Day, MS

justin.day.2009@gmail.com

ifs.harriscountytx.gov

Cathinone Standards

- 2,3-Methylenedioxypyrovalerone
- 2,3-Pentylone
- 2,4-Dimethylethcathione
- 2,4-Dimethylmethcathinone
- 2-Methoxymethcathinone
- 3-Fluoromethcathinone
- 3-Methylbuphedrone
- 3-Methylethcathinone
- 3-Methylmethcathinone

- 4-Bromomethcathione
- 4-Chloromethcathinone
- 4-Ethylmethcathinone
- 4-Fluorormethcathinone
- 4-Methylbuphedrone
- 4-Methylmethcathinone
- α-PVP
- Cathinone
- Dimethylone

- Dipentylone
- Ethylone
- Eutylone
- MDPBP
- MDPV
- Methedrone
- Methylone
- PV8

Cayman Chemical